au=A032 371 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
OPTICAL TRANSMiSSOMETER=NEPHILOMETER FOR DEEP OCEAN USE. (V)
SEP 76 D M MOSEY

viivkASSIFIED




o

122

22
1L

Hi22 flie e

=1l

O

!




A“A032371

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

D C
e Me

NOV 23 1976

THESIS

OPTICAL
TRANSMISSOMETER~-NEPHELOMETER
FOR DEEP OCEAN USE

by

David Michael Mosey

September 1976

»
Thesis Advisor: 7 S. P. Tucker

Approved for public release; distribution
unlimited.



——

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dete Bntered)

REPORT DOCUMENTATION PAGE S TR
(7

S ——t o

-

COVERED
-~

/ Optical Transmissometer- Nephelometer“(
for Deep Ocean Use, |

6. PERFORMING ORG. REPORT NUMBER

,. THOR(e) [ B A -] ANY NUM )
David Michael/ﬁosey
I3 PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK |

AREA & WORK UNIT NUMBERS
Naval Postgraduate School

Monterey, California

11. CONTROLLING OFFICE NAME AND ADDRESS /’" | A REPORPDARG " o
Naval Postgraduate School { // Se%r 2762
Monterey, California 93940 o

SECURITY CLASS. (of thie rdport)

Naval Postgraduate School £ Unclassified

Monterey, California 933940 |/ tiﬁ
. ¢ “tm‘.. ICATION/ DOWHNGRADING

[76. DISTRIBUTION STATEMENT (of this Repert)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Bleck 20, If ditferent frem Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Centinue on olde It ary and |dontify by bleeck mamber)

i

%
20. A%T(Cn&.nmdﬁnmdlﬂbhmm

A submersible light transmissometer-nephelometer was
designed and constructed for the purpose of measuring the
beam attenuation and relative volume scattering coefficients
at two fixed angles and at depths to 1000 meters.

Flexlblllty, a major de81gn criterion, makes it possible
for the unit to be operated in a number of configurations.
Addition of an internal battery supply, a filter wheel, llghtéihjdffﬁ

DD “,,,,.,, 1473 eoiTion oF 1 wOV 68 18 OBSOLETE
(Page 1) $/N 0102-014+ 6601 |

251 %*&

SECURITY CLASSIFICATION O




4 } fecumTy CLASSIFICATION OF THIS PAGE(When Dete Entered.

!
|
i
!
I
ﬂ* ’jstops, a photomultiplier tube and amplifiers is possible.
? The NPS light transmissometer-nephelometer is not a single
f purpose instrument but has the capability to be utilized as
' a submersible optical bench, useful in the development of
|

underwater optical instrumentation.

l A

T

LU White Section M
o Bulf Soctisa (O
UNANNOUNCED 0
JUSTIFICATION . 0

L1
I'ﬂlllll’lﬁl/"‘lullll" m

b AL e/ SFiiL

A

Sorm 1473
S/ h} OI%i 014-6601 SECURITY CLASSIFICATION OF THiS PAGE(When Data Entered)




sl

Optical
Transmissometer-Nephelometer
for Deep Ocean Use

by

David Michael Mosey
Lieutenant, United States Navy
B.S.E.E., Purdue University, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL
September 1976

Approved by: éw (\)./"W B
Thesis Advisor

Reader

rtment of Oceanography

67’ Academic Dean




ABSTRACT

A submersible light transmissometer-nephelometer was
designed and constructed for the purpose of measuring the
beam attenuation and relative volume scattering coefficients
at two fixed angles and at depths to 1000 meters.

Flexibility, a major design criterion, makes it possible
for the unit to be operated in a number of configurations.
Addition of an internal battery supply, a filter wheel, light
stops, a photomultipliér tube and amplifiers is possible.
The NPS light transmissometer-nephelometer is not a single
purpose instrument but has the capability to be utilized as
a submersible optical bench, useful in the development of

underwater optical instrumentation.
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I. INTRODUCTION

A. BACKGROUND

1. Water Characteristics Instrumentation

A knowledge of certain underwater optical parameters
is essential if one wishes to characterize optically a par-
ticular type of water in which operations involving light are
to be conducted. Such operations may include among others
the use of imaging systems, fixed underwater lighting, remote
underwater television cameras and external lights for use on
deep submergence vehicles, optical detection and communica-
tion systems, and near-shore bathymetry.

Many instruments have been developed to measure under-
water optical characteristics. The instrument which was de-
signed and constructed was made in an attempt to combine two
meters into one for measuring the volume attenuation coeffi-
cient c(A)* at visual wavelengths and the scattering coeffi-
cient, B(6). These quantities will be discussed in detail
later. A simplified diagram of the dual-purpose instrument
is shown in Figure 1.

In general a transmissometer or c-meter is used to
measure the volume attenuation coefficient at some wavelength,
A. A basic transmissometer consists of a light source with

a narrow, highly collimated beam and a receiver with a narrow

%
Frequently this attenuation coefficient has been
designated by "a".
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field of view. The source and detector are separated by a
fixed distance, usually one to two meters. Normally, photo-~
cells are used to measure the radiant output of the source
and the irradiance detected at the receiver. From these
measureménts, the transmissivity, T, over the length of the
beam's path can be determined.

An instrument used to determine the volume scatter-

ing function, B(6), is the large-angle scattering meter or

" nephelometer (5]. In this instrument the light scattered

from an elemental scattering volume is recorded by a photo-
detector that rotates in a semicircle at a fixed radius from
the scattering volume, 6 being the angle between the optical
axis of the detector and the forward direction of the source
(see Figure 2).

These instruments measure two of the inherent optical
properties of seawater.

2. Scattering and Absorption

Attenuation of light is due to the effects of scat-
tering and absorption. The attenuation of a beam passing
through seawater can thus be considered to be the sum of the

effects of (1) scattering by the water, b (2) scattering

W’
by dissolved material, bd; (3) scattering by suspended par-
ticulates, bp; (4) absorption by the water, a,s (5) absorp-
tion by dissolved material, ays and (6) absorption by sus-

pended particulates, a It is then described by the relation

po

c =a +a,+ ap + bw + bd + bp (1)
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The volume scattering function, B(8) describes the

et angular dependence of the light scattered from a small

volume element.

tion:

where dJ(e)

B(6) is defined operationally by thc equa-

dJ(e) = B(6)HAV (2)

radiant intensity (power/solid angle)
of the light scattered from a colli-
mated beam in the volume element dV.

polar angle which describes the direc-
tion of the scattered light with res-
pect to the axis of the collimated
beam.

irradiance (power/unit area) of the
light incident on dV.

The scattering coefficient b, is related to the

volume scattering function B(8) as follows:

)

b may be
tering term, bes

b Thus:

bo

o
"

o
"

T ;
2m B(6) sin® de (3)
:

considered to be composed of a forward scat-

and a backscatter term, bb, where b = bf +

m/2
2m B(B) sinb dé (4)
.
mw
21r/ B8(8) siné do (5)
w/2
13




An absorption coefficient a, describes the attenuation of
light for a particular wavelength by the absorption mecha-
nism alone. It strongly depends on the optical wavelength,
and is related to the attenuation coefficient, ¢, and the
scattering coefficient, b = bw + bd + bp, in the following

manner:

a=ac=>b (6)

The volume attenuation coefficient c()A), can be de-
fined operationally as follows: if a collimated source of
radiance Ny and wavelength A is directed through a medium
(such as water), the radiance at distance r down the beam
is N,.. N, is smaller than N, - because of absorption and
scattering in the medium - by the ratio:

Nr A e-c(A)r

0

(7)

Hence, the volume attenuation coefficient for a

collimated 1light source described is defined as ([2]:
N
& 1 r
¢ s =230 “5 (8)

The measurement of ¢ is, complicated, however, by
the necessity to distinguish unscattered light from the
light which has been scattered at very small angles. Be-

cause some scattered light is always collected at the




receiver of even the best instruments, the measured attenua-

tion is actually given by:

c' = ¢c + gb (9)

where g is some number less than one, the value of which de-
pends on the instrument. Because the value of the measured
attenuation coefficient depends on the design of the instru-
mentation as well as the properties of the water, the accu-
racy of reported measurements of the attenuation coefficient
must be carefully evaluated [S5].
B. OTHER TECHNIQUES FOR MEASURING VOLUME

ATTENUATION COEFFICIENT

There are many techniques for measuring the spectral
volume attenuation coefficient, ¢, and no attempt will be
made to present all of them. Several significant and quite
different types of measurements, which in all cases yield
the same numerical result, will be mentioned briefly here.
Duntley [l] gives detailed discussions of such measurements.

l. Contrast Reduction

Underwater photographs of objects taken in the hori-
zontal direction disclose that a simple exponential form of
the contrast reduction equation holds for daylight.

The value of the attenuation coéfficient measured
in this way is in fact c¢ [(3].

2, ¢ at High Collimation

By varying the length of the water path and making

a semilogarithmic plot of flux received vs. distance from

15




)

a collimated light source, absolute values of ¢ can be found
from the slope of the resulting straight line without requir-
ing an air reading.

The values of attenuation coefficient are remarkably
unaffected by beam and receiver geometry as long as (1)
stray light is effectively eliminated and (2) the ratio of
beam diameter to length of the water path is small. It is
not necessary to have high collimation at both the light
source and the receiver, although stray light is easier to
suppress when some practical amount of collimation is pro-
vided for both source and receiver. Beam divergence and re-
ceiver field of view of the order of 1 degres seems to be
a good choice for fixed path transmissometers using an air
measurement to establish the c=0 reading (l]. Higher colli-
mation does not result in an appreciably different value of
the volume attenuation coefficient,

3. ¢ from Measurements of Irradiance on Axis

Several ways of measuring c are suggested when the
receiver of a transmissometer is an irradiance collector.
The curves obtained for various combinations of beam diam-
eters, beam divergences and path segments will follow the
c-slope [3]. In most practical circumstances, however, they
are not attractive options from the standpoint of convenience.

4, c¢ from Visual Threshold Range

Underwater psychophysical experiments show that
laboratory visual threshold data are applicable to valid

numerical predictions of visual threshold distances. Such




data show that black-suited swimmers having no areas of
higher reflectance will, when deployed horizontally,lose
sight of each other at a separation of 4 attenuation
lengths when there is ample daylight [(3]. Thus, two swim-
mers can determine 1/c simply by separating horizontally
while connected by a measuring line. One fourth of their
mutual disappearance range equals l/c. No equipment other
than a knotted, measured line is needed. Water clarity may
be measured in this way.

5. ¢ from Telephotometry of an Extended, Diffuse
Source

Telephotometer measurements of the apparent radiance
of the center of a diffusely emitting surface will produce
a straight line on a semilogarithmic plot of apparent radiance
vs. lamp distance, the slopg of which is a measure of c [3].

6. c for Laser Light

Several of the foregoing techniques are applicable

to laser sources, which lead to the same values for c [(3].

C. MEASUREMENT OF THE VOLUME SCATTERING FUNCTION

A nephelometer, or large angle scattering meter is used
to determine the volume scattering function B(8). The basic
configuration of a nephelometer is shown in Figure 2. In
the measurement of }(e) as a function of 6, scattering volume
is recorded by a photodetector that rotates in a semicircle
at a fixed radius from the scattering volume. One problem

with nephelometers has been a difficulty in defining the

elemental scattering volume. Another problem occurs because

17
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the instruments normally cannot measure scattering at very
small angles. Because the volume scattering function is
strongly peaked at small angles, errors occur in attempting
to evaluabe b by integrating the volume scattering function
that is determined by this type of instrument. [5].

If the complete scattering function is desired the
scatterance must be observed at a number of angles from 0°
to 180°. /. general discussion of the various techniques is
given by Jerlov [3].

If b is to be obtained the observations must cover both
small and large angles, and they should be carried out in situ.
Small angle forward scattering is due especially to the
presence of suspended particles which in number lead to a
significant amount of light scattered at angles less than
one degree. Most in vitro measurements are in the angular
interval 10° to 165° and given only in relative units. This
prevents (1) a calculation of the scattering coefficients by
integration, and (2) a separation of molecular and particle
scatterance. In the present review, attention has been
focused on the observations giving absolute values, and pri-
marily those made in situ. The in vitro technique is ham-
perad by the risk of contamination and of changes in the
particles while sampling and during the time lapse between
sampling and measurement (3].

The calibration of scattering instruments presents a
special problem. The use of standard scatterers or perfect

diffusers is not reliable. The technique of Morel (1966)

18
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using benzene as a known standard gives very accurate rela-
tive - but not absolute - results. Kullenberg (1968, 1969)
avoids the use of a reference by measuring the intensity and
elemental volume. This is a reliable technique, provided
the scattering volume is accurately determined, and the

geometry of the system is well defined [3].

19
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II. INSTRUMENTATION

A. NPS UNDERWATER TRANSMISSOMETER AND SCATTERING METER

The NPS Underwater Transmissometer and Scattering meter
was designed and constructed by the author and Stevens P.
Tucker. It was an attempt to incorporate off-the-shelf
optical components and solid state photodetection devices.

The mechanical complexity was minimized by using only one

‘motor with associated gearing to drive the optical sampling

mirror. Fiber-optics ("light pipes") were used to minimize
the number of prisms and lenses which require critical
alignment and positioning. The use of a single, solid-
state photodetector provides an output which is always ref-
erenced to the same light intensity. The one-meter path

for the light beam was chosen to keep the optical system
simple and is an acceptable length for measurements in
coastal and upwelling areas. Figure 3 is an overall view of
the NPS instrument, and the numbers refer to part numbers
listed in Appendix A.

l. Collimated Source

Originally the NPS instrument was to incorporate a
helium-neon laser as a light source. However, difficulties
in the high voltage supply of the unit necessitated return
to the manufacturer for repair. Unfortunately, the particu-

lar laser was no longer in production, and repair was

20
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untimely. These facts necessitated the construction of an
alternative light source.

The quartz-iodine lamp adopted draws 3 amps at 6
volts to produce the intensity required for the instrument.
Rays from the lamp are collected by back-to~back moﬁnted
aspheric condensers, and collimated by a two element achromat.
They exit the instrument horizontally through the 1" pyrex
window. Off-axis rays are limited by a .040" diameter stop
placed between the achromat and condensers. Figure Y4 depicts
the arrangement of the components on the slider rods in sec-
tional view. Provisions are made for the installation of an
additional field stop in front of A, Figure 5 is a photograph
of the light source.

Beam diameter at the receiver is 19 mm and its diver-
gence is of the order of Ry Duntley [3] has shown such a
divergence to be acceptable.

The source is contained in one of two stainless steel
pressure housings. It is bolted to one end of an aluminum
support frame.

2. Receiver/Optical Sampler Section

Figure 6 is a schematic representation of detector
inputs. The optical sampling system utilized in this instru-
ment provides several advantages over other sampling methods.
It enables all inputs to be sampled by one detector, whether
it is a photodetector, photomultiplier tube or other light
sensing device. All inputs are continually being referenced

to the same light intensity, and any variation in this

22




*spoa uo sjuauodwod Jo Juswedurday

*h 9@an31j

hT N/d

r—

ST

doys ,o0n0* -~ S
*y xtpuaddy ur umoys s3utmeap uo punoj (N/d) duey ~ 1
sasqunu jaed aae sasqunu jusauodwod Jurjiunol 210N SI9SUBPUOD - 3
suaT aaT109(lqo OoTiPWOIYDO® =~ Y
e wwQ9 f———— WWpg wwgy ——
WWGZ— o]
o wo6Z'0Z
| _ _
6 N/d
| )
S| ‘|
=iy
A 2T 11
5 N/d €T N/d g b

N/d

23




*90anos JYSTT a8jsuwoTaydau-a23oWOSSTWSURI],

*g a2an3tg

24

5T e




*sindutr ao3oe3lep jo uorieiusssadea oriPWRYO§ *9 San3dTg

101310939
0T-NId &an

wesq

peijtTusuera],

JOJIATW
II\ 3utieioy

25

TR s s, i




X4

intensity is readily observed on the output record. Addi-
tionally, the sequential sampling of this type of system
always includes the light reference level in each set of
sampled values. Finally, the method is mechanically and
optically simple and reliable as there are no complicated
lens arrangements to direct and re-focus the beam. The
motor that drives the sampling mirror requires only one set
of gears, one gear on the motor shaft and the other on the
shaft of the sampling mirror.

This method of sequential optical sampling is like
that used in other samplers in current use [4]. The Defense
Meteorological Satellite Program (DnSP) Block 5D satellite
contains a sensor which samples in a similar manner [4].

A diagonal mirror driven by a stepper motor, samples humid-
ity, temperature and ozone by making a set of radiance
measurements which are then mathematically inverted to pro-
vide vertical compositional profiles. The degree‘of sophis-
tication is necessarily greater than the NPS unit, but tlre
principles and theory of operation are similar.

In the NPS meter the collimated light beam is pro-
jected through the seawater along a one-meter path and is
incident upon a 55-mm achromatic lens, which focuses the
rays down to a diamet;r of 3 mm. The light rays then reflect
off the front surface of the rotating mirror (in position
one) into the photodetector. Figure 7 depicts the ray path
to the solid state detector in this position. As the mirror

rotates it cycles through positions 2, 3, and 4 in sequence

26
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These positions and their functions are described in detail
in the following paragraphs.

In mirror position two, the sampling mirror receives
light rays from a fiber optic light pipe originating near
the quartz-iodine bulb. The terminal end of this pipe is
the fiber-optic end mount. These reflected rays are the
means by which the reference intensity is sensed by the photo-
detector. . Figure 8 depicts the ray paths in mirror positions
2, 3, and 4.

In positions 3 and 4 the mirror reflects light rays
from the fiber-optic sensors. The only difference between
these positions and position one is the origin of the input.
Scattering of the beam is sensed by the fiber-optic bundles
which are mounted on the fixed-angle mounting plate. Figure
1 depicts the approximate positions of the fiber bundles on
the mounting plate.

The fixed-angle mounting plate has the advantage of
being able to change the input angle to the light pipes.

The fiber-optic mounts are drilled, tapped, and keyed with
dowel pins to allow manual adjustment in 20° steps. The ad-
justment holes are positioned in an arc centered on the
scattering volume dV. Thus, scattering for angles from 10°
to 170° may be investigated with some minor adjustment.
Figure 9 shows the detector arrangement and fiber optic in-
put positions. Figure 10 depicts the mirror drive motor and
associated gearing. Figure 11 illustrates the photodetector

and its mounting configuration.

28




*h pue ¢ ¢z suoritsod aoaatw-wealerp Aey g san8t1g

29

aaéf

3did LHDIT 211dO-yd38id

h ¢ 9Tdue
Sutasiqeos
3 T aT8ue
Burae13eos
Z S0UaIaJad
woay Y3TY
uoT3TSOd

il |




Figure 9. Detector mounting.
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Figure 11.

Photodetector mounting arrangement.
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3. Power Requirements

The instrument requires a low-voltage source capable
of providing a maximum of 24 volts and 3 amperes. Figure 12
is a wiring diagram of the underwater electrical connector.
Voltages supplied to pins 3, 4, 5 and 6 of this connector
via a supply cable power the lamp and D.C. motor. The motor
requires 24 volts to drive it at 42 rpm. In tests conducted
in the laboratory, a supply of 6 volts was sufficient to pro-
vide 10 samples per minute. Rotation rates greater than 42
rpm may be obtained by changing the drive gears. Pins 3 and
6 are for the motor supply.

The power for the G.E. 1974 lamp is supplied through
pins 4 and 5. No polarity need be observed on the lamp
supply.

There is sufficient room provided in the pressure
case that surrounds the detector to install a fixed battery
supply should this become necessary. However, the cable to
the ship makes it possible to change supply voltages and
thus the lamp intensity and motor speed.

4, System Operation

Figure 13 is a conceptual diagram depicting the basic
operation of the instrument. The rotating diagonal mirror
sequentially reflects the light coming from four different
sources, into the solid state detector. Three of these
sources represent quang}ties to be measured and the fourth
is the lamp reference input. Figures 14 and 15 show the
scattering sensor arrangement in side and top views, respec-

tively.
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The detector is operated in a biased mode and gives
an output voltage proportional to the input light intensity.
Although this method of operation increases detection sensi-
tivity, a dark current exists which must be dealt with dur-
ing data analysis. A Wratten 61 filter was installed in
front of the detector for the purpose of restricting the
wavelengths of light admitted to a bandwidth of about 60 nm
having a dominant wavelength of about 534 nm.

During air calibration the infrared wavelengths must
be attenuated, as they are present in the spectrum admitted
to the detector, which is sensitive to I.R. Removal of the
I.R. wavelengths is best accomplished by using a Schott BG-18
I.R. blocking filter which was unavailable during the initial
laboratory set-up. Instead, a Corning 1-57 filter was used
in conjunction with a Hoya HA-30. The total system is shown
in Figure 16 with the pressure housings removed for clarity.

5. OQutput

The detector output (Figure 17) is an analog voltage
signal representing each property measured: transmission,
scattering at angle 61, reference intensity and scattering
at angle 92. The absence of scattering signals is explained
by noting that the meter was bench operated and the scatter-

ing levels are imperceptible in air.

B. RESULTS
1. Bench Testing

A Gould Model 110 recorder was used to obtain a
laboratory calibration of the instrument. On the

5-mV scale the maximum signal level was 2.2% mV.
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A motor reversing switch was used to stop the mirror
in a position where maximum transmission occurred. The re-
corder signal of 2.25 mV corresponds to 92.5% transmission
in water. Wratten neutral density filters were used to veri-
fy the detector linearity to a known reduction in beam inten-
sity. The calibration was accomplished with the set-up

depicted in Figure 18.

. T S

ENEEEENEE

Figure 17. Voltage output; bench operation.

a. Equipment
The following equipment was used for bench tests:
1) P/S 1 Hewlett Packard 6215A power supply
2) P/S 2 Power Designs 36505 power supply
3) P/S 3 Powermate BP34C power supply
4) Gould Model 110 Recorder




R

recorder

F
‘ c
P£S = 1

4 _volts

motor

+
PL8- =12

3 _amps

- lamp

+ Y i
B/S =3 10 volts 1K@

PIN~10
Figure 18. Experimental set up for bench tests.

b. Optical Filters

1) Wratten

61l; installed in detector face.

2) Hoya HA-30 I.R. absorbing filter in lens

retainer (P/N 18).

3) Corning 1-57 at detector face.

The transmission curves for the Corning 1-57

and Wratten 61 filters are shown in Figure 19.

The trans-

mission curve for the Hoya HA-30 filter is shown in Figure

20. The Wratten 61 filter limits the wavelengths to a band-

width of 60 nm at a dominant wavelength of 534 nm.

41
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c. Detector Biasing
The detector biasing arrangement is shown in

Figure 21.

ARG

1KQ

+ incident
-0 volts x ——

light

: Figure 21. Detector biasing schematic.

During bench testing, a decade resistor substitu-
tion box was used in conjunction with the variable power
supply to obtain a suitable signal. A bias of 10 volts (as
per manufacturers recommendations) was adequate for satisfac-
tory operation.

2. Environmental Testing

On 16 September 1976, the instrument and laboratory
apparatus were transported aboard R/V Acania, the Oceanographic
research vessel of the Naval Postgraduate School. A 7-meter
cast to verify meter operation in an ocean environment was

performed. The ship was berthed at the Coast Guard pier in




Monterey Harbor, Mopterey, California. This location provided

good conditions for the observation of scattered light, as

the harbor is a biologically active region having an abundance

of dissolved and suspended matter.

in Figure 22.

The results are presented

Scale Reading Trgnsmittance -1
Depth (mV) in water Cm
on deck 2.250 92,50 (in air)
2.0 0.200 Bei? 2.42
2:9 0.250 10.28 2.20
3 0.250 10.28 2.20
B 0.200 Be22 2.42
5 0.250 10.28 2.20
6 0.158 6.37 2.68
{4 0.100 4,11 3.11
bottom 0 0 100

Figure 22. In-water test results.

Scattering of the beam was detectable in the 110°

fixed angle sensor, but not measurable, as the recorder sensi-

tivity and response were not great enough to provide a

useable signal.




IIT. CONCLUSIONS

The NPS Transmissometer-Nephelometer performed as ex-
pected in the rather turbid harbor water. The scattering
signals were anticipated to be extremely low due to the
present poor termination of the fiber bundles and the de-
crease of light intensity at the detector after the instal-
lation of the filters.

Several schemes to improve the performance of the in-
strument are possible.

A. Detector biasing improvements. A circuit arrange-
ment that is suitable for exhibiting the ultimate capabili-
ties of the detector is given in the manufacturer's applica-
tion notes. It is operated in the biased mode and includes
an A.C. amplifier (i.e. UDT FET 100) to increase the
detectable output signal.

B. Fiber-optic terminations. The transmission of
scattered light to the detector is extremely dependent upon
the manner in which the light pipes are terminated. Potting
the ends of the fiber bundles in epoxy and polishing the
tips ¢o reduce reflectipns is one method to reduce attenua-
tion at the input sensor. The sensor ends should also be
filled with immersion o0il (n=1.515) to match the refractive
indexes of glass and the optical fibers.

Small negative lenses at the detector end of the

sensor input could serve to increase the area of the detector




illuminated. The active area of the PIN-10 detector is

1.250 cm?

and should be fully utilized to obtain maximum
output signal.

C. Better fibers. The installation of Bausch and Lomb
series 32-01, 02 or 03 light "wires" which have been commer-
cially terminated would enhance the light transmission.

These non-coherent "wires" have an incident light gathering
efficiency of 60% at the receiving end and a transmitting
efficiency of 95% per foot.

D. Photomultiplier tube. Replacing the PIN-10 detector
with a photomultiplier tube and a logarithmic amplifier would
provide considerably more output signal. This is especially
useful when scattering signals are very low.

E. Chopper relays. The addition of a series of chopper
relays synchronized with the rotating mirror may be Qsed to
separate electrically the signals representing I(0), I(1),
B(el), and 8(92). These signals may then be recorded on
separate channels of a tape recorder to simplify analysis.

F. Data processing. Improved results can also be obtained
through the use of digital processing technique. The analog
signals may be recorded on a magnetic tape recorder, digitized

with an A to D converter, and computer analyzed.




APPENDIX A
NPS TRANSMISSOMETER~NEPHELOMETER
DRAWINGS AND SPECIFICATIONS
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APPENDIX B
LIST OF OFF-THE-SHELF COMPONENTS UTILIZED IN
THE NPS TRANSMISSOMETER-NEPHELOMETER

Motor: 24 VDC, 42 RPM D.C. motor, Magnatorc, Hansen
Mfg. Co., Inc., Princeton, Indiana.
Gears: 50 tooth, 2 3/16" 0.D.
Lens: aspheric condenser, unsymmetrical; S/N 40339,
Dia. 72.5 mm, F.L. 46 mm; Edmund Scientific Co.,
Barrington, N. J. 08007 (2 required).
Lens: achromat, coated; S/N 6246, Dia. 39 mm, F.L.
63 mm; Edmund Scientific.
Lens: achromat, Dia. 30 mm, F.L. 55 mm; Edmund
Scientific.
Fiber optics; 12 feet required; No. OP736-C, 0.152",
6 foot lengths of jacketed fiber, contains 37 0.017"
plastic fibers, 0.119" I.D./0.152" 0.D.; International
Rectifier Corporation.
Terminations: Indicator light.for fiber optics;
S/N 41232; Edmund Scientific. ‘
Glass windows: 3/4" thick Pyrex, 4" Dia.j; (2 required).
Fittings: Swagelock, 1l/4", stainlegs steel..
Bearings: Fafnir F5, (2 required).
Lamp: General Electric miniature lamp, #1974, 20W,

6 volt.




i 12. Detector: PIN-10 solid state photoconductor, P/N 2023;
| United Detector Technology, Santa Monica, California.
13. Waterproof connector: Mecca, #2047 w/o-ring; MECCA,
P.0. Box 3693, 519 Jessamine, Houston, Texas 77036.
14, O-rings: (for pyrex windows), Parker 2-239 O-ring,

(2 required).
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